- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Lipasti, Mikko H. (2)
-
Puthoor, Sooraj (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This article introduces turn-based spatiotemporal coherence. Spatiotemporal coherence is a novel coherence implementation that assigns write permission to epochs (or turns) as opposed to a processor core. This paradigm shift in the assignment of write permissions satisfies all conditions of a coherence protocol with virtually no coherence overhead. We discuss the implementation of this coherence mechanism on a baseline GPU. The evaluation shows that spatiotemporal coherence achieves a speedup of 7.13% for workloads with read data reuse across kernels compared to the baseline software-managed GPU coherence implementation while also providing write atomicity and avoiding the need for software inserted acquire-release operations. 1more » « less
-
Puthoor, Sooraj; Lipasti, Mikko H. (, ACM Transactions on Architecture and Code Optimization)null (Ed.)Sequential consistency (SC) is the most intuitive memory consistency model and the easiest for programmers and hardware designers to reason about. However, the strict memory ordering restrictions imposed by SC make it less attractive from a performance standpoint. Additionally, prior high-performance SC implementations required complex hardware structures to support speculation and recovery. In this article, we introduce the lockstep SC consistency model (LSC), a new memory model based on SC but carefully defined to accommodate the data parallel lockstep execution paradigm of GPUs. We also describe an efficient LSC implementation for an APU system-on-chip (SoC) and show that our implementation performs close to the baseline relaxed model. Evaluation of our implementation shows that the geometric mean performance cost for lockstep SC is just 0.76% for GPU execution and 6.11% for the entire APU SoC compared to a baseline with a weaker memory consistency model. Adoption of LSC in future APU and SoC designs will reduce the burden on programmers trying to write correct parallel programs, while also simplifying the implementation and verification of systems with heterogeneous processing elements and complex memory hierarchies. 1more » « less
An official website of the United States government
